A novel method for 3-D microstructure modeling of pome fruit tissue using synchrotron radiation tomography images

نویسندگان

  • H. K. Mebatsion
  • P. Verboven
  • A. Melese Endalew
  • J. Billen
چکیده

0260-8774/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.jfoodeng.2009.01.008 * Corresponding author. Tel.: +32 16 32 05 90; fax: E-mail addresses: [email protected] Mebatsion). Fruit microstructure determines mechanical and transport properties of tissues. This calls for geometric characterization and representation of fruit tissue components. In this paper, three important components of fruit cortex tissue, cell wall, pore network and cells were modeled in 3-D. These components were explicitly defined based on the information gathered from synchrotron X-ray computed tomography and transmission electron microscopy. The cells were modeled based on a novel ellipsoid tessellation algorithm, producing also 3-D void structures in small fruit cortex sample volumes. The cell wall thickness was determined from TEM images using digitization procedures. The resulting geometry models compared well to the tomographic images. The method has the significant advantages of, one, producing models that are easy to use in computer aided design software for multiscale mechanics and mass transfer, and two, providing a framework for virtual tissue generation, including cell growth modeling. Furthermore, the solid modeling approach avoids many problems of finite element meshing existing today. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution image in bone biology I. Review of the literature.

Bone microstructure has usually been assessed by obtaining samples invasively and analyzing them with conventional histomorphometric methods. Improvements in high-resolution image acquisition systems have enabled non-invasive assessment of bone morphology and a more precise 3-D evaluation by means of "virtual biopsies", permitting bone assessment in regeneration or remodeling processes. This re...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Development of a Liver Phantom Based on Computed Tomography Images for Dosimetric Purpose

Introduction: The present study was conducted with the aim of designing a liver phantom for dosimetry. To benchmark the results obtained by the developed liver phantom, another method was applied for the dosimetry of a real liver tissue using imaging. Materials and Methods: For the purpose of the study, a real liver tissue was converted into a phantom based on thegram-molecular weight of the co...

متن کامل

Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale.

A Rietveld method is described which extracts information on crystal structure, texture and microstructure directly from two-dimensional synchrotron diffraction images. This is advantageous over conventional texture analysis that relies on individual diffraction peaks, particularly for low-symmetry materials with many overlapping peaks and images with a poor peak-to-background ratio. The method...

متن کامل

3-Dimensional Characterization of Polycrystalline Bulk Materials Using High-Energy Synchrotron Radiation

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009